新闻资讯
Group news
青岛广盛源肥业有限公司    您的位置: 首页  >  新闻资讯  >  正文

linux Platform设备驱动

2019年10月12日 文章来源:网络整理 热度:149℃ 作者:刘英

PlatForm设备驱动:

一、platform总线、设备与驱动

1.一个现实的Linux设备和驱动通常都需要挂接在一种总线上,对于本身依附于PCI、USB、I2C、SPI等的设备而言,这自然不是问题,

但是在嵌入式系统里面,SoC系统中集成的独立的外设控制器、挂接在SoC内存空间的外设等确不依附于此类总线。

基于这一背景,Linux发明了一种虚拟的总线,称为platform总线,相应的设备称为platform_device,而驱动成为 platform_driver。

2.注意,所谓的platform_device并不是与字符设备、块设备和网络设备并列的概念,而是Linux系统提供的一种附加手段,

例如,在 S3C6410处理器中,把内部集成的I2C、RTC、SPI、LCD、看门狗等控制器都归纳为platform_device,而它们本身就是字符设备。

3.基于Platform总线的驱动开发流程如下:

(1)定义初始化platform bus

(2)定义各种platform devices

(3)注册各种platform devices

(4)定义相关platform driver

(5)注册相关platform driver

(6)操作相关设备

4.平台相关结构

//platform_device结构体

struct platform_device {

const char * name;/* 设备名 */

u32 id;//设备id,用于给插入给该总线并且具有相同name的设备编号,如果只有一个设备的话填-1。

struct device dev;//结构体中内嵌的device结构体。

u32 num_resources;/* 设备所使用各类资源数量 */

struct resource * resource;/* //定义平台设备的资源*/

};

//平台资源结构

struct resource {

resource_size_t start; //定义资源的起始地址

resource_size_t end; //定义资源的结束地址

const char *name; //定义资源的名称

unsigned long flags; //定义资源的类型,比如MEM,IO,IRQ,DMA类型

struct resource *parent, *sibling, *child;

};

//设备的驱动:platform_driver这个结构体中包含probe()、remove()、shutdown()、suspend()、 resume()函数,通常也需要由驱动实现。

struct platform_driver {

int (*probe)(struct platform_device *);

int (*remove)(struct platform_device *);

void (*shutdown)(struct platform_device *);

int (*suspend)(struct platform_device *, pm_message_t state);

int (*suspend_late)(struct platform_device *, pm_message_t state);

int (*resume_early)(struct platform_device *);

int (*resume)(struct platform_device *);

struct pm_ext_ops *pm;

struct device_driver driver;

};

//系统中为platform总线定义了一个bus_type的实例platform_bus_type,

struct bus_type platform_bus_type = {

.name = “platform”,

.dev_attrs = platform_dev_attrs,

.match = platform_match,

.uevent = platform_uevent,

.pm = PLATFORM_PM_OPS_PTR,

};

EXPORT_SYMBOL_GPL(platform_bus_type);

//这里要重点关注其match()成员函数,正是此成员表明了platform_device和platform_driver之间如何匹配。

static int platform_match(struct device *dev, struct device_driver *drv)

{

struct platform_device *pdev;

pdev = container_of(dev, struct platform_device, dev);

return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);

}

//匹配platform_device和platform_driver主要看二者的name字段是否相同。

//对platform_device的定义通常在BSP的板文件中实现,在板文件中,将platform_device归纳为一个数组,最终通过platform_add_devices()函数统一注册。

//platform_add_devices()函数可以将平台设备添加到系统中,这个函数的 原型为:

int platform_add_devices(struct platform_device **devs, int num);

//该函数的第一个参数为平台设备数组的指针,第二个参数为平台设备的数量,它内部调用了platform_device_register()函 数用于注册单个的平台设备。

1. platform bus总线先被kenrel注册。

2. 系统初始化过程中调用platform_add_devices或者platform_device_register,将平台设备(platform devices)注册到平台总线中(platform bus)

3. 平台驱动(platform driver)与平台设备(platform device)的关联是在platform_driver_register或者driver_register中实现,一般这个函数在驱动的初始化过程调用。

通过这三步,就将平台总线,设备,驱动关联起来。

二.Platform初始化

系统启动时初始化时创建了platform_bus总线设备和platform_bus_type总线,platform总线是在内核初始化的时候就注册进了内核。

内核初始化函数kernel_init()中调用了do_basic_setup() ,该函数中调用driver_init(),该函数中调用platform_bus_init(),我们看看platform_bus_init()函数: 

int __init platform_bus_init(void)

{

int error;

early_platform_cleanup(); //清除platform设备链表

//该函数把设备名为platform 的设备platform_bus注册到系统中,其他的platform的设备都会以它为parent。它在sysfs中目录下.即 /sys/devices/platform。

//platform_bus总线也是设备,所以也要进行设备的注册

//struct device platform_bus = {

//.init_name = "platform",

//};

error = device_register(&platform_bus);//将平台bus作为一个设备注册,出现在sys文件系统的device目录 

if (error)

return error;

//接着bus_register(&platform_bus_type)注册了platform_bus_type总线.

/*

struct bus_type platform_bus_type = {

.name = “platform”,

.dev_attrs = platform_dev_attrs,

.match = platform_match,

.uevent = platform_uevent,

.pm = PLATFORM_PM_OPS_PTR,

};

*/

//默认platform_bus_type中没有定义probe函数。

error = bus_register(&platform_bus_type);//注册平台类型的bus,将出现sys文件系统在bus目录下,创建一个platform的目录,以及相关属性文件

if (error)

device_unregister(&platform_bus);

return error;

}

//总线类型match函数是在设备匹配驱动时调用,uevent函数在产生事件时调用。

//platform_match函数在当属于platform的设备或者驱动注册到内核时就会调用,完成设备与驱动的匹配工作。

staTIc int platform_match(struct device *dev, struct device_driver *drv)

{

struct platform_device *pdev = to_platform_device(dev);

struct platform_driver *pdrv = to_platform_driver(drv);

/* match against the id table first */

if (pdrv->id_table)

return platform_match_id(pdrv->id_table, pdev) != NULL;

/* fall-back to driver name match */

return (strcmp(pdev->name, drv->name) == 0);//比较设备和驱动的名称是否一样

}

staTIc const struct platform_device_id *platform_match_id(struct platform_device_id *id,struct platform_device *pdev)

{

while (id->name[0]) {

if (strcmp(pdev->name, id->name) == 0) {

pdev->id_entry = id;

return id;

}

id++;

}

return NULL;

}

//不难看出,如果pdrv的id_table数组中包含了pdev->name,或者drv->name和pdev->name名字相同,都会认为是匹配成功。

//id_table数组是为了应对那些对应设备和驱动的drv->name和pdev->name名字不同的情况。

//再看看platform_uevent()函数:platform_uevent 热插拔操作函数

staTIc int platform_uevent(struct device *dev, struct kobj_uevent_env *env)

{

struct platform_device *pdev = to_platform_device(dev);

add_uevent_var(env, "MODALIAS=%s%s", PLATFORM_MODULE_PREFIX, (pdev->id_entry) ? pdev->id_entry->name : pdev->name);

return 0;

}

//添加了MODALIAS环境变量,我们回顾一下:platform_bus. parent->kobj->kset->uevent_ops为device_uevent_ops,bus_uevent_ops的定义如下:

staTIc struct kset_uevent_ops device_uevent_ops = {

.filter = dev_uevent_filter,

.name = dev_uevent_name,

.uevent = dev_uevent,

};

//当调用device_add()时会调用kobject_uevent(&dev->kobj, KOBJ_ADD)产生一个事件,这个函数中会调用相应的kset_uevent_ops的uevent函数,

三.Platform设备的注册

我们在设备模型的分析中知道了把设备添加到系统要调用device_initialize()和platform_device_add(pdev)函数。

Platform设备的注册分两种方式:

上一篇:Linux时间子系统之一:定时器的应用


下一篇:你了解过Linux内核中的内存屏障?

友情链接
Links